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Terms and conditons

You are encouraged to use this document responsibly: you should always try the
hardest possible to solve the exercises on your own, and only then check your
answers. Also, after you read a solution, always take a moment to meditate about
what you learnt from it!
If you find any errors, or you want to submit a more elegant solution, please write
an e-mail to gm2070@hw.ac.uk.

Confusing notation

N will denote the set of natural numbers, including zero (the absence of something
is as natural as the presence of something). Whenever I want to exclude zero I will
write N¡0.

Chapter 2: Set theoretic revision

Exercise 1. We shall prove that, given a map f : X Ñ Y between sets and any
A,B � Y , the following relation holds:

f�1pAXBq � f�1pAq X f�1pBq.

To prove that two sets are equal, we must show that every element belonging to
one also belongs to the other, and viceversa.1

So first we show that every element x which belongs to f�1pA X Bq must also
belong to f�1pAq X f�1pBq. Now, x P f�1pA X Bq means that fpxq P A X B. As
A X B � A, we have that fpxq P A, which in turn means that x P f�1pAq. If we
replace A with B in the above argument2 we get that x P f�1pBq as well. As x

1This is what is called the extensionality axiom.
2We can because A and B play symmetrical roles in this proof!

1
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belongs to both f�1pAq and f�1pBq, it must lie in the intersection of these two
sets, so x P f�1pAq X f�1pBq.
Conversely, pick any element x P f�1pAq X f�1pBq, and we have to show that
x P f�1pA X Bq. Notice that f�1pAq X f�1pBq � f�1pAq, so x P f�1pAq, which
means that fpxq P A. The same argument, with A replaced by B, yields that
fpxq P B. Thus fpxq belongs to AXB, as it belongs to both A and B, and in turn
this means that x P f�1pAXBq, as required.
The proof of the second equality is very similar.

Exercise 2. As in the previous exercise, we show that the two sides of the equality
have the same elements. To this extent, we shall prove that, given any element
x P X, then x P f�1pY �Aq if and only if x P X�f�1pAq.3. Indeed, x P f�1pY �Aq
if and only if fpxq P Y �A, as this is the definition of preimage of Y �A. In turn,
fpxq P Y � A is equivalent to saying that fpxq R A, and in turn fpxq R A if and
only if x R f�1pAq. Finally, we can rewrite the last statement as x P X � f�1pAq,
as required.

Chapter 3: Topologies and continuity

Exercise 3. Recall that a subset O of R is open if, for every x P O, there exists
an open interval pa, bq such that x P pa, bq and pa, bq � O.
Firstly, R is open, as every point x P R belongs to some open interval (say for
example px� 1, x� 1q). Furthermore, every open interval pa, bq is tautologically an
open subset of R.
Now let F be a finite subset of R, and enumerate its elements x1, . . . , xk for some
k P N. For every x P R � F , there exists an interval px � ε, x � εq which is small
enough to contain x but not any element of F : for example, one can take

ε � 1{2 min
i�1,...,k

|x� xi|,

where |x�xi| is the distance between x and the ith point of F . Then px�ε, x�εq �
R� F . This proves that R� F is open.
Finally, letH be the empty set. As no element x P R belongs toH (which is, indeed,
empty), it is true that every element of the empty set (that is, no element) belongs
to an open interval contained in the empty set, because there are no elements to
check ! 4

Exercise 4. Let a ¤ b be elements of R. The closed interval ra, bs is not open, and
to show this it is enough to exhibit an element p of ra, bs which does not belong to
any open interval contained in ra, bs. We claim that we can choose p � b. Indeed, if
an open interval px, yq contains b then b   y, so px, yq also contains b� ε for some
small enough ε ¡ 0. In turn, this means that px, yq cannot be contained in ra, bs,
as it contains the point b� ε which is strictly greater than b.
Moreover, let F � tx1, . . . , xku be a finite, non-empty set, for some k P N¡0. Then
any open interval px, yq containing x1 must also contain x� ε for some small ε, and
we can choose it small enough that x� ε is not any of the other points x2, . . . , xk.

3This could be done also in the previous exercise: try it!
4Think of it this way: the definition of some set O being open can be rephrased by saying ”if

an element x P R belongs to O, then. . . ”. This is a logical implication, and if O � H then the
hypothesis of the implication is false, as no element of R can belong to H. Then an implication
with false premise is always true, logically speaking!
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This means that no open interval can contain x1 and be contained in F , so F is
not open.

Exercise 5. We have to check the following three requirements:

(1) H and R are both open. This was part of Exercise 3.
(2) If tAiuiPI is any collection of open subsets, where i varies in some index

set I, then the union A �
�

iPI Ai is open as well. Indeed, every x P A
must belong to some Ai, and as Ai is open there must be an open interval
pa, bq � Ai containing x. In particular, pa, bq is also contained in A. This
proves that every point x of A belongs to some open interval contained in
A, that is, A is open.

(3) If tAiui�1,...,k is any finite collection of open subsets, then the intersection

A1 �
�k

i�1 Ai is open as well. Indeed, if x P A1 then x P Ai for every i,
so we can find an open interval pai, biq � Ai containing x. In other words,
ai   x   bi for every i, meaning that x P pmaxi�1,...,k ai,mini�1,...,k biq. As
the latter interval is contained in every pai, biq, we see that

p max
i�1,...,k

ai, min
i�1,...,k

biq � A1.

This proves that A1 is open.

Exercise 6. We have to check the following three requirements:

(1) H and R both belong to O1. This is true as H P O1 by construction, while
R � R �H is obtained from R after removing zero (hence finitely many)
points.

(2) If tAiuiPI � O1 then A �
�

iPI Ai also belongs to O1. Indeed each (non-
empty)Ai can be written as R�Fi for some finite set Fi. SoA � R�

�
iPI Fi,

and a intersection of finite sets is finite.
(3) If tAiui�1,...,k � O1 for some k P N, then the intersection A1 �

�k
i�1 Ai

belongs to O1 as well. Indeed, if one of the Ai is empty then clearly A1 � H.
Otherwise each Ai can be written as R � Fi for some finite subset Fi;

therefore A1 � R �
�k

i�1 Fi is in O1 as we are removing a finite union of
finite sets, which is again finite.

Exercise 7 (hint). This is proven as Exercise 5: just replace every open interval
pa, bq with ra, bq.

Exercise 8 (hint). It is enough to find a subset which is open in Ostd but not in
O1. For example, p0, 1q is open in the standard topology (as it is an open interval),
but is not open in O1 as it cannot be espressed as R minus a finite set.

Exercise 9 (hint).

(1) pa, bq is open, by how the standard topology is defined. However it is not
closed, because its complement p�8, as Y rb,�8q is not open (to see this,
one can argue exactly as in Exercise 4).

(2) ra, bs is closed, because its complement p�8, aqYpb,�8q is open since it is
a union of open intervals. However, ra, bs is not open, as shown in Exercise
4.

(3) ra, bq is not open, which again can be seen by repeating the proof of Exercise
4. For the same reason, its complement p�8, aqYrb,�8q is not open, which
means that ra, bq is not closed.
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(4) R is open, as the whole space always belong to a topology. R is also closed,
as its complement is H which is also open.

Exercise 10.

(1) As the whole space X belongs the topology, it is a union
�

i P IBi of
elements of the basis. Hence every x P X must belong to some Bi P B.

(2) As B1, B2 P B � O, both B1 and B2 are open, so their intersection is open
as well. Therefore B1XB2 is a union of elements of B, and therefore every
x P B1 XB2 belongs to some basis element B3 � B1 XB2.

Exercise 11. By Proposition 3.10, it is enough to check that the given basis B �
tO � V : O P O, V P Vu satisfies the two properties from Exercise 10.

(1) Every px, yq P X �Y belongs to X �Y , which is in the basis as X P O and
Y P V.

(2) Given two elements O1 � V1, O2 � V2 of the basis, it is easy to see that
their intersection is pO1 X O2q � pV1 X V2q, which is again a product of
open sets (as any finite intersections of open subsets is open). Therefore
pO1 XO2q � pV1 X V2q P B.

Exercise 12. Let O P O1, and we want to show that it also belongs to O2. By
definition of the basis B1, we have that O is some union

�
iPI Bi, where every

Bi P B1. Moreover for every i P I and every x P Bi there exists B1px, iq P B2 such
that x P B1px, iq � Bi. Hence

O �
¤
iPI

Bi �
¤
iPI

¤
xPBi

B1px, iq.

In other words, O is a union of elements of the basis B2, and therefore belongs to
O2, as required.

Exercise 13 (hint). Let dp�, �q denote the Euclidean distance on Rn. In order to
show that the metric topology coincides with the standard topology, one has to
show that any Euclidean ball Bpx, rq � tp P Rn : dpx, pq   ru is a union of open
rectangles pa1, b1q � . . . ,�pa,bnq, and viceversa every rectangle is a union of balls.
It isn’t hard to imagine a ball made of tiny little rectangles. . .

Exercise 14. We need to check the three properties of a topology:

(1) A is in OA, as A � AXX and X is open in any topology on X.
(2) Any union of elements of OA is of the form

�
iPIpAXOiq � AX p

�
iPI Oiq,

where every Oi P O. As
�

iPI Oi P O, we get that the union is in OA as
well.

(3) Any finite intersection of elements of OA is of the form
�k

i�1pA X Oiq �

A X
��k

i�1 Oi

	
, where every Oi P O. As

�k
i�1 Oi P O, we get that the

intersection is in OA as well.

Exercise 15 (partial solution). We shall prove that the composition of two
continuous maps f : X Ñ Y and g : Y Ñ Z is continuous. Let A � Z be an open
subset, and we want to show that pg � fq�1pAq is open. By definition,

pg � fq�1pAq � f�1
�
g�1pAq

�
.
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As g is continuous, the preimage g�1pAq of the open set A is open in Y . But then,
using that f is continuous as well, we get that the preimage f�1

�
g�1pAq

�
is open

in X, as required.
The other two parts of the exercise are dealt with similarly (try them!)

Exercise 16. The identity map id : pX,Odiscq Ñ pX,Otrivq is clearly bijective:
every element x P X is mapped to x, so the inverse of the identity map is the
identity map itself. Moreover, this map is continuous: the only elements of Otriv

are H and X, and their preimages under the identity map (which are again H and
X) belong to the discrete topology Odisc, and actually to any topology on X.
However, to prove that id is not a homeomorphism, we must prove that the inverse
map id : pX,Otrivq Ñ pX,Odiscq is not continuous. To see this, let txu be the
subset containing a single element x P X. Notice that txu is open in the discrete
topology, which contains every subset of X. However, txu does not coincide with
neither the empty set H nor the whole space X, because we are assuming that
X has at least two points. Therefore, id�1ptxuq � txu is not an element of the
trivial topology. This means that id : pX,Otrivq Ñ pX,Odiscq is discontinuous, as
we found a subset of X which is open in the discrete topology, but whose preimage
under id is not open in the trivial topology.

Exercise 17. The proof is by contradiction: we assume that the thesis is true, and
we deduce an impossible statement.
So suppose that O1 is first-countable. This means that, if we fix x � 0, there exists
a countable family An � R� Fn of elements of O1, such that:

 each An contains 0;
 If O P O1 contains 0 then it must also contain Ak for some k P N.

We claim that we can find an O P O1 which does not satisfy the second statement.
Indeed, let F �

�
nPN Fn be the union of the finite sets that define the Ans. This is

a countable union of finite sets, and is therefore countable.5 In particular, F Y t0u
is still countable.6 As R is uncountable, it cannot coincide with F Y t0u, so there
must be some element y P R� pF Y t0uq.
Then let O � R� tyu, which belongs to the topology O1. We claim that, for every
n P N, An � O. Indeed, the element y belongs to An, as An � R � Fn and by
construction Fn does not contain y; however y R O by our choice of O, meaning
that An cannot be a subset of O.
In other words, we found an element of the topology which contains 0 but does
not contain any of the Ans, against the fact that the An form a neighbourhood
basis. □

Exercise 18. Let An � O1 X . . .XOn. To show that An is a neighbourhood basis
for x we must check the following facts:

 Every An contains x. This is clearly true, as every Ok contains x and
therefore any intersection of Ok contains x.

 If A P O is open and contains x, then it contains some An. Indeed, by
definition of the neighbourhood basis tOnu, there exists n P N such that
On � A, and now it suffices to notice that An � On by construction.

5Try to prove this yourself, Otherwise, check https://math.stackexchange.com/questions/

603456/prove-that-the-union-of-countably-many-countable-sets-is-countable.
6This is the famous children game ”Infinity plus one”. . .

https://math.stackexchange.com/questions/603456/prove-that-the-union-of-countably-many-countable-sets-is-countable
https://math.stackexchange.com/questions/603456/prove-that-the-union-of-countably-many-countable-sets-is-countable
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Exercise 19. We first point out the following facts:

(1) In any topological space X, if C � X is closed then, for any sequence
pxnqnPN � C and any limit x̄ for pxnqnPN, then x̄ P C (this is the solution
of the question from Remark 3.21; try to prove it yourself!)

(2) Let X be a first-countable topological space X, and let C � X be such
that, for any sequence pxnqnPN � C and any limit x̄ for pxnqnPN, the limit
belongs to C. Then C is closed (this is Lemma 3.20).

Having this in mind, an inspection of the proof of Lemma 3.22 reveals that the only
spot where we really need one of the spaces to be first-countable is where we say
that, to prove that f�1pCq is closed, it is enough to prove that, given any sequence
pxnqnPN � f�1pCq, any limit x̄ for pxnqnPN belongs to f�1pCq. This is point (2)
from above, and is only using the fact that X is first-countable.
Another way to realise that the requirement on X is the only that we really need
is to check that the Lemma is false if X is not first-countable, even assuming that
Y is. Indeed, let X � R with the cocountable topology (a subset A is open if and
only either A is empty, or A � R� T , where T is countable), and let Y � R with
the Euclidean topology. It is easy to see that Y is first-countable, while X is not
(for the latter, the proof is very similar to that of Exercise 17). Now consider the
identity map id : X Ñ Y .

 First notice that id is not continuous. Indeed, the interval p0, 1q is open in
the usual topology, but not in the cocountable one.

 However, id maps converging subsequences to converging subsequences.
Indeed, let pxnqnPN � X be a converging subsequence, and let x̄ be any
of its limits. Consider the set A � R � txnunPN Y tx̄u. This set is open
in the cocountable topology, as we are removing countably many points
from R. As xn converges to x̄, there exists n0 such that xn P A for every
n ¥ n0. By how we defined A, this means that xn � x̄ for every n ¥ n0,
that is, the sequence is constant from a certain point. Then, if we take the
image under the identity map, we get that xn still converges to x̄ in Y ,
as it eventually stabilises. This proves that the identity map sends every
subsequence which converges in X to a subsequence which converges in Y .

Chapter 4: Connected spaces

Exercise 20. Clearly f |X�txu is bijective. Moreover, f is continuous. Indeed, let
A � Y � tfpxqu be open in the subspace topology, meaning that there is a subset
A1 � Y which is open in Y and such that A1 � tfpxqu � A. By continuity of f ,
f�1pA1q is open, and notice that f�1pA1q � txu � f�1pAq as f is bijective. Hence
f�1pAq is open in the subspace topology for X �txu, as required. Finally, if in the
above argument we replace f by its inverse f�1 : Y Ñ X, we get that the inverse
of f |X�txu is also continuous. Therefore f |X�txu is a homeomorphism.

Exercise 21. 1.Ñ 2. If X � A\B and both A and B are closed, then X�A � B
and X �B � A must be open as the complement of a closed set is open.
2.Ñ 3. If A is open and B � X �A is open, then A is also closed. Moreover, as A
and B are non-trivial, A is neither empty nor the whole X.
3. Ñ 1. If A is non-empty, not X, and both closed and open, then B � X � A is
non-empty and closed.
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Exercise 22. The subsets p�8, 0q and p0,�8q are non-empty, open subsets of
R� t0u whose union is the whole space. Therefore R� t0u is disconnected.

Exercise 23. Consider the subsets A � p�8, πq XQ and B � pπ,�8qXQ. They
are open in Q, as they are obtained by intersecting Q with two open sets of R, and
their union is the whole Q as π R Q.

Exercise 24 (self-explanatory). There aren’t that many non-trivial subsets of
tpu. . .

Exercise 25 (updated 10/10/2024). Let f : X Ñ Y be a continuous, surjective
map. We shall prove the contrapositive of the statement: if Y is disconnected
then X must be disconnected as well. Indeed, Y being disconnected means that
there exist two non-empty open subsets A and B of Y such that A \ B � Y .
Now, their preimages under f are open subsets of X, as f is continuous, and
f�1pAq X f�1pBq � H as the targets A and B are disjoint. Furthermore, as f is
surjective, there exists x, x1 P X such that fpxq P A and fpyq P B, so f�1pAq and
f�1pBq are both non-empty. Then X � f�1pAq \ f�1pBq is a disjoint union of
non-empty open subsets.
In particular, if X and Y are homeomorphic, there exists a continuous map f : X Ñ
Y whose inverse is continuous, so X is connected if and only if Y is.

Exercise 26 (hint). Simply take the negation of Item 3. of the definition of a
disconnected space.

Exercise 27 (hint). A is closed, so its complement ra, bs � A is open (which is
what we used in the proof).

Exercise 28. Suppose by contradiction that X is not connected. Hence we can
find two non-empty open subsets O,P such that X � O\P . As X �

�
nPN An and

X strictly contains both O and P , there must be some n P N such that An intersects
non-trivially both O and P (otherwise all An would line in, say, O, and therefore
X would be contained in O). Hence, by definition of the subspace topology on An,
we have that AnXO and AnXP are non-empty open subsets of An, contradicting
the fact that An was connected. □

Exercise 29. Given any n P N � t0u and any two points x, y P Rn, consider the
linear map f : r0, 1s Ñ Rn such that, for every t P r0, 1s,

fptq � ty � p1� tqx,

where we see x and y as vectors in Rn and take a linear combination depending on
t. What is really going on is that the image of f is the line segment between x and
y. One can easily check that fp0q � x, fp1q � y, and f is continuous.

Exercise 30 (hint). For simplicity, we assume n � 2, as the following argument
easily generalises to higher dimensions. Given any two points x, y P R2 � t0u we
shall describe a path from x to y, without giving its explicit function. First, consider
the circle C centred at 0 and passing through x. Let x1 P C be such that 0, x1, and
y are aligned, and 0 does not lie between x1 and y. Then the path from x to y is
the circle arc from x to x1, followed the line segment from x1 to y (notice that, by
our choice of x1, this segment does not contain 0). We thus get a path from x to y
which is totally contained in R2 � t0u.
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Exercise 31. A path from x to x always exists: it’s the constant path f : r0, 1s Ñ X
such that fptq � x for every t P r0, 1s. Therefore x lies in its connected component
P pxq.

Exercise 32. We shall prove the exercise in the case when X � AYB, for A and
B open (the case in which they are both closed follows analogously). Let O � Y
be open, and we want to show that f�1pOq is open. Notice that, as f |A : AÑ Y is
continuous, we have that f |�1

A pOq � f�1pOqXA is open, and similarly f�1pOqXB
is open. Then

f�1pOq � f�1pOq XX � f�1pOq X pAYBq � pf�1pOq XAq Y pf�1pOq XBq.

Therefore f�1pOq is a union of two open sets, and is therefore open.

Exercise 33. 1. Given any two y, z P P pxq, there exist a path from y to x and a
path from x to z, so their concatenation is a path from y to z.
2. Every x P X belongs to P pxq, so X �

�
xPX P pxq. To show that the union is

disjoint, it is enough to show that, if x P P pyq X P pzq then P pyq � P pzq. Indeed,
there is a path from y to x and a path from x to z, so there is a path from y to
z. Then, every w P P pzq can be connected to y by some path, and this means that
P pzq � P pyq. Swapping y and z in the previous argument yields that P pyq � P pzq,
so P pyq � P pzq as they contain each other.
3. If A is path connected, then either A is empty (and is therefore contained in every
path component), or there exists x P A, and every other y P A can be connected to
x by some path. In this case A � P pxq, by definition of P pxq.
4. Given any x P P pyq, there is a continuous path from x to y, so its image under f
is a continuous path from fpxq to fpyq (this is because a composition of continuous
functions is continuous). Therefore fpxq P P pfpyqq, and as x was any element of
P pyq we get that fpP pyqq � P pfpyqq.

Exercise 34. Let x, y P Q be distinct points. If we show that there exist two
disjoint open subsets A,B � Q such that x P A, y P B, and A \ B � Q, then y
cannot belong to Cpxq, as otherwise A X Cpxq and B X Cpxq would be two non-
empty, disjoint, open subsets whose union is the connected component Cpxq. Then
it is enough to choose any irrational number z P R�Q such that x   z   y (which
clearly exists: prove it!), and set A � p�8, zq XQ and B � pz,�8q XQ.

Exercise 35. Let A � Rn be open, and let x P A. For every ε ¡ 0, let

Bpx, εq � ty P Rn | |x� y|, εu

be the open ball centered at x and with radius ε. As A is open, one can choose ε
tiny enough that Bpx, εq � A. Then Bpx, εq is a neighbourhood of x (because it is
itself open), and we claim that it is path-connected.
To see this, let y P Bpx, εq, and let f : r0, 1s Ñ Rn map t P r0, 1s to fptq �
tx� p1� tqy. In other words, the image of f is the line segment with endpoints x
and y. Now, fptq P Bpx, εq for all t P r0, 1s. Indeed

|x� ptx� p1� tqyq| � |p1� tqpx� yq|,

and as 0 ¤ t ¤ 1 we get that

|p1� tqpx� yq| � p1� tq|x� y| ¤ |x� y|   ε.

Then fpr0, 1sq � Bpx, εq, that is, f is a path in the ball connecting x to y. As y
was any point in Bpx, εq, we get that the ball is path-connected, as required.
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Exercise 36. Firstly, we notice that a singleton txu is always closed in a metric
space. Indeed, for every y � x, the open ball Bpy, dpx, yq{2q is totally contained in
X � txu, so the latter is open.
Now, if x is an isolated point then txu is also open. This means that the connected
component Cpxq cannot contain any other y P X, because otherwise it would
be the disjoint union of the two non-empty open subsets txu and Cpxq � txu �
Cpxq X pX � txuq.

Exercise 37. By definition, xn Ñ x means that, for every open set A containing
x, there exists n0 P N such that xn P A for every n ¥ n0. If by contradiction x was
an isolated point, we could choose A � txu. But then some xn should be equal to
x, against the hypothesis. □

Chapter 5: Compact spaces

Exercise 38. Let X be a finite topological space, and let tAiuiPI be an open cover.
As X is finite, it has finitely many subsets, so tAiuiPI must be a finite collection.
Hence every open cover has a finite subcover, so X is compact. □

Exercise 39. We first prove that R is not compact. Indeed, let An � p�n, nq. The
collection tAnunPN¡0 is an open covering, but it does not admit a finite subcover
because if one takes the union of the first k elements one gets

k¤
n�1

An � p�k, kq.

As R and p0, 1q are homeomorphic, Exercise 40 tells us that p0, 1q is not compact
as well.7

Exercise 40. Let f : X Ñ Y be a surjective continuous map, and let X be com-
pact. To see that Y is compact as well, let tAiuiPI be an open covering of Y ,
and we want to extract a finite subcover. By continuity of f , tf�1pAiquiPI is an
open covering of X, and as the latter is compact we can extract a finite subcover
tf�1pA1q . . . , f

�1pAnqu. In other words, for every x P X, fpxq belongs to at least
one between tA1, . . . , Anu. As f is surjective, every y P Y is the image of some x,
and therefore belongs to at least one between tA1, . . . , Anu. Thus we proved that
tA1, . . . , Anu is a finite subcover of tAiuiPI , as required. □

Exercise 41. Let X � r0, 1s and Y � p0, 1q, both equipped with the topology
inherited from being a subspace of R.8 Then X is compact by Proposition 5.4,
while p0, 1q is not by Exercise 39.

7In order to show that p0, 1q is not compact, one could also emulate the proof for R: try it!
8One should check that the subspace topology on Y , seen as a subspace of X, is the same as

the subspace topology on Y , seen as a subspace of R. In general, the same holds for every three

topological spaces Y � X � W . This is an easy but boring exercise, so we skip it.
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Exercise 42. Caveat: we assume that bothX and Y are non-empty, asH�X � H
is compact for every topological space X.
Consider the projection map πX : X � Y Ñ X, mapping a pair px, yq to its first
entry x. This map is clearly surjective; moreover it is continuous, since if A � X is
open then π�1

X pAq � A� Y is a product of open sets, and is therefore open in the
product topology. Then by Exercise 40, if X � Y is compact then X is compact.
The same argument holds if one replaces X by Y .

Exercise 43. We want to show that Z � BRpzq is open. To this extent, it is
enough to notice that, given any y P Z � BRpzq, the open ball centered at y and
with radius pR � dZpz, yqq{2 is contained in Z � BRpzq. This is exactly what we
did in Exercise 36 to show that a singleton (that is, a closed ball of radius zero) is
closed in a metric space. □

Exercise 44. Consider the open subsets Ok � Z � Ak. If by contradiction�
kPN Ak � H, then by taking the complements one gets that

�
kPN Ok � Z, that is,

tOkukPN is an open covering. As Z is compact, we can extract a finite subcovering,
that is, there exists some r P N such that Z �

�
k¤r Ok. However, since Ak�1 � Ak

for every k, we have that Ok � Ok�1. In particular, we have that

Z �
¤
k¤r

Ok � Or.

Thus Ar � Z�Or � H, violating the assumption that the Ak are all non-empty. □

We now provide a possible counterexample for the case when Z is not compact.
Let Z � R with the standard topology, and let Ak � rk,�8q, which is a decreasing
chain of non-empty closed subsets whose intersection is empty.

Exercise 45. Let pX,dq be totally bounded, If one sets r � 1, there exist finitely
many points x1, . . . xr such thatX �

�r
i�1 B1pxiq. Now letR � max1¤i,j¤r dpxi, xjq,

and we claim that, for every two y, z P X the distance dpy, zq is at most R�2, thus
proving that X is bounded. Indeed, since X is covered by the union of balls, there
exist i, j such that y P B1pxiq and z P B1pxjq. Then the triangle inequality yields
that

dpy, zq ¤ dpy, xiq � dpxi, xjq � dpxj , zq ¤ 1�R� 1 � R� 2.

as required. □

We now provide a possible example of a bounded, but not totally bounded space.
Let X � N, and defined a new distance D such that Dpi, jq � 1 whenever i � j.9

Clearly pX,Dq is bounded, as any two points are at distance 1. However, if r   1
and x P X, then the ball Brpxq only contains x, so one cannot cover the infinite set
X with finitely many balls of radius r.

Exercise 46. Let B be a countable base, let x P X and let A � tB P B |x P Bu,
which is countable as B is. Any open neighbourhood O of x is a union of the
elements of the base, so there must be some B P B such that x P B � O. This
proves that A is a countable neighbourhood basis for x, and as x P X was arbitrary
we get that X is first-countable. □

9This is the distance inducing the discrete topology!
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Exercise 47 (hint). Let B � tpp, qq | p   q, p, q P Qu. This is a countable set, as
the endpoints belong to Q, and it is easily seen that B is the basis of some topology
O (by checking the requirements of Proposition 3.10).
We now show that O is actually the standard topology. To do this, one can invoke
Exercise 12: if B1 � tpa, bq | a   b, a, b P Ru is the basis of the standard topology,
we must check that:

 For every B P B and x P B there exists B1 P B1 such that x P B1 � B. To
see this, it is enough to notice that B � B1, so one can choose B1 � B.

 For every B1 P B1 and x P B1 there exists B P B such that x P B � B1.
To see this, suppose that B1 � pa, bq. Then one can find p, q P Q such that
a   p   x   q   b, so that, if one sets B � pp, qq, then x P B � B1.

Thus O coincides with the standard topology, and therefore B is a countable basis.
□

Exercise 48. Let B be a countable basis for X, and let Y � X. Then A �
tY X B |B P Bu is a countable collection of open sets. To see that A is a basis,
basis, pick open set of Y , which is of the form Y XO, where O is open in X. Then,
as O is a union of elements of B, we get that

Y XO � Y X

�¤
iPI

Bi

�
�
¤
iPI

Bi X Y.

Hence Y XO is a union of elements of A, i.e. A is a basis. □

Exercise 49. Let pX,dq be a sequentially compact metric space, and let pxnqnPN be
a Cauchy sequence, which we want to show has a limit. By sequential compactness,
there exists a subsequence pxnpkqqkPN converging to some x P X.
We now claim that limnÑ8 xn � x, by using the definition: for every ε ¡ 0 we
want to find n0 P N such that dpxn, xq ¤ ε whenever n ¥ n0. To see this, let
n0 be such that, whenever n,m ¥ n0, dpxn, xmq ¤ ε{2 (such an n0 exists by
definition of a Cauchy sequence). Moreover, choose k0 such that, whenever k ¥ k0,
dpxnpkq, xq ¤ ε{ (such a k0 exists by definition of limit of a sequence). Up to
choosing a bigger k0, we can assume that npk0q ¥ n0. Then, for every n ¥ n0, the
triangle inequality yields

dpxn, xq ¤ dpxn, xnpk0qq � dpxnpk0q, xq ¤ ε{2� ε{2 ¤ ε,

as required. □

Exercise 50. Let Y be a closed subspace of the complete metric space pX,dq, let
tynunP⋉ be a Cauchy sequence in Y , and we want to show that yn converges to a
point in Y . By completeness of X, yn converges to some x P X. Moreover, as a
metric space is first-countable (see Remark 3.18), Lemma 3.20 implies that a limit
of a sequence in the closed subspace Y must belong to Y , so x P Y , as required. □

Exercise 51. Let x � y be two points in the metric space pX,dq, and let R �
dpx, yq. Then the open balls Bpx,R{3q and Bpy,R{3q are disjoint open subsets,
each of which contains only one of the two points. This shows that the topology
on X is Hausdorff. □
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Exercise 52. For every x P D, Lemma 3.20 grants the existence of two disjoint
open sets Ux, Vx such that C � Ux and x P Vx. Then tVxuxPD is an open covering
of D, from which one can extract a finite covering tVx1 , . . . , Vxnu. Let V � Vx1 Y
. . .YVxn

, which contains D by definition of a covering, and let U � Ux1
X . . .XUxn

.
Notice that C � U , as it is contained in every Uxi

, and U is open, since it is a
finite intersection of open sets. Moreover U and V are disjoint, since for every
i � 1, . . . , n, U � Uxi is disjoint from Vxi by assumption. Then U and V satisfy
the requirements. □

Chapter 6: The quotient topology

Exercise 53. Firstly, both X{ � andH belong to the topology, as their preimages
are respectively X and H. Furthermore, given a collection tAiuiPI of open sets in
the quotient topology, we have that

π�1

�¤
iPI

Ai

�
�
¤
iPI

π�1pAiq,

and the latter is open in X; hence an arbitrary union of open sets in the quotient
topology is open. Finally, given a finite collection tAiui�1,...,n of open sets in the
quotient topology, then

π�1

�
n¤

i�1

Ai

�
�

n¤
i�1

π�1pAiq,

and again the latter is open in X; this proves that any finite intersection of open
sets in the quotient topology is open.
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